Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(2): e14245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450764

RESUMO

Leaf dark respiratory CO2 -release (RD ) is, according to some literature, dependent on the rate of leaf transpiration. If this is true, then at a given vapor pressure deficit, the leaf stomatal conductance (gs ) will be expected to be a controlling factor of measured RD at any given time. We artificially lowered leaf gs by applying abscisic acid (ABA). Although leaf RD generally covaried temporally with gs , artificially lowering gs by applying ABA does not affect the measured leaf RD . These results indicate that observed diel fluctuations in gs are not directly influencing the measured leaf RD , thereby simplifying both future studies and the interpretation of past studies of the underlying environmental- and physiological drivers of temporal variation in leaf RD .


Assuntos
Ácido Abscísico , Dióxido de Carbono , Folhas de Planta , Ácido Abscísico/farmacologia , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal
3.
Glob Chang Biol ; 29(21): 6093-6105, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37647012

RESUMO

Whole-ecosystem interactions and feedbacks constrain ecosystem responses to environmental change. The effects of these constraints on responses to climate trends and extreme weather events have been well studied. Here we examine how these constraints respond to changes in day-to-day weather variability without changing the long-term mean weather. Although environmental variability is recognized as a critical factor affecting ecological function, the effects of climate change on day-to-day weather variability and the resultant impacts on ecosystem function are still poorly understood. Changes in weather variability can alter the mean rates of individual ecological processes because many processes respond non-linearly to environmental drivers. We assessed how these individual-process responses to changes in day-to-day weather variability interact with one another at an ecosystem level. We examine responses of arctic tundra to changes in weather variability using stochastic simulations of daily temperature, precipitation, and light to drive a biogeochemical model. Changes in weather variability altered ecosystem carbon, nitrogen, and phosphorus stocks and cycling rates in our model. However, responses of some processes (e.g., respiration) were inconsistent with expectations because ecosystem feedbacks can moderate, or even reverse, direct process responses to weather variability. More weather variability led to greater carbon losses from land to atmosphere; less variability led to higher carbon sequestration on land. The magnitude of modeled ecosystem response to weather variability was comparable to that predicted for the effects of climate mean trends by the end of the century.


Assuntos
Carbono , Ecossistema , Retroalimentação , Tempo (Meteorologia) , Atmosfera , Mudança Climática
4.
Ecol Appl ; 33(7): e2902, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37345972

RESUMO

Green infrastructure's capacity to mitigate urban environmental problems, like heat island effects and excessive stormwater runoff, is partially governed by its plant community. Traditionally, green infrastructure design has focused on engineered aspects, such as substrate and drainage, rather than on the properties of its living components. Since the functioning of these plant assemblages is controlled by ecophysiological processes that differ by species, the identity and relative abundance of the species used will influence green infrastructure performance. We used trait-based modeling to derive principles for the effective composition of green infrastructure plant assemblages, parameterizing our model using the vegetation and ecophysiological traits of the species within New York City rain gardens. Focusing on two plant traits that influence rain garden performance, leaf surface temperature and stomatal conductance, we simulated the cumulative temperature and transpiration for plant communities of differing species composition and diversity. The outcomes of the model demonstrate that plant species composition, species identity, selection effects, and interspecific complementarity increase green infrastructure performance in much the way biodiversity affects ecosystem functioning in natural systems. More diverse assemblages resulted in more consistent transpiration and surface temperatures, with the former showing a positive, saturating curve as diversity increased. While the dominant factors governing individual species leaf temperature were abiotic, transpiration was more influential at the community level, suggesting that plants within diverse communities may be cooler in aggregate than any individual species on its own. This implies green infrastructure should employ a variety of vegetation; particularly plants with different statures and physical attributes, such as low-growing ground covers, erect herbaceous perennials, and shrubs.


Assuntos
Planejamento de Cidades , Conservação dos Recursos Naturais , Planejamento Ambiental , Jardins , Plantas , Cidades , Conservação dos Recursos Naturais/métodos , Ecossistema , Temperatura Alta , Chuva , Cidade de Nova Iorque , Especificidade da Espécie
5.
Plant Cell Environ ; 46(1): 45-63, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36151613

RESUMO

Light availability drives vertical canopy gradients in photosynthetic functioning and carbon (C) balance, yet patterns of variability in these gradients remain unclear. We measured light availability, photosynthetic CO2  and light response curves, foliar C, nitrogen (N) and pigment concentrations, and the photochemical reflectance index (PRI) on upper and lower canopy needles of white spruce trees (Picea glauca) at the species' northern and southern range extremes. We combined our photosynthetic data with previously published respiratory data to compare and contrast canopy C balance between latitudinal extremes. We found steep canopy gradients in irradiance, photosynthesis and leaf traits at the southern range limit, but a lack of variation across canopy positions at the northern range limit. Thus, unlike many tree species from tropical to mid-latitude forests, high latitude trees may not require vertical gradients of metabolic activity to optimize photosynthetic C gain. Consequently, accounting for self-shading is less critical for predicting gross primary productivity at northern relative to southern latitudes. Northern trees also had a significantly smaller net positive leaf C balance than southern trees suggesting that, regardless of canopy position, low photosynthetic rates coupled with high respiratory costs may ultimately constrain the northern range limit of this widely distributed boreal species.


Assuntos
Picea
6.
New Phytol ; 236(1): 71-85, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35727175

RESUMO

Leaf daytime respiration (leaf respiration in the light, RL ) is often assumed to constitute a fixed fraction of leaf dark respiration (RD ) (i.e. a fixed light inhibition of respiration (RD )) and vary diurnally due to temperature fluctuations. These assumptions were tested by measuring RL , RD and the light inhibition of RD in the field at a constant temperature using the Kok method. Measurements were conducted diurnally on 21 different species: 13 deciduous, four evergreen and four herbaceous from humid continental and humid subtropical climates. RL and RD showed significant diurnal variations and the diurnal pattern differed in trajectory and magnitude between climates, but not between plant functional types (PFTs). The light inhibition of RD varied diurnally and differed between climates and in trajectory between PFTs. The results highlight the entrainment of leaf daytime respiration to the diurnal cycle and that time of day should be accounted for in studies seeking to examine the environmental and biological drivers of leaf daytime respiration.


Assuntos
Clima , Folhas de Planta , Folhas de Planta/fisiologia , Plantas , Respiração , Temperatura
7.
Plant Cell Environ ; 45(7): 2078-2092, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35419840

RESUMO

White spruce (Picea glauca) spans a massive range, yet the variability in respiratory physiology and related implications for tree carbon balance at the extremes of this distribution remain as enigmas. Working at both the most northern and southern extents of the distribution range more than 5000 km apart, we measured the short-term temperature response of dark respiration (R/T) at upper and lower canopy positions. R/T curves were fit to both polynomial and thermodynamic models so that model parameters could be compared among locations, canopy positions, and with previously published data. Respiration measured at 25°C (R25 ) was 68% lower at the southern location than at the northern location, resulting in a significantly lower intercept in R/T response in temperate trees. Only at the southern location did upper canopy leaves have a steeper temperature response than lower canopy leaves, likely reflecting canopy gradients in light. At the northern range limit respiration is nearly twice that of the average R25 reported in a global leaf respiration database. We predict that without significant thermal acclimation, respiration will increase with projected end-of-the-century warming and will likely constrain the future range limits of this important boreal species.


Assuntos
Picea , Aclimatação/fisiologia , Folhas de Planta/fisiologia , Respiração , Temperatura , Árvores/fisiologia
8.
Ecology ; 103(7): e3689, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35324006

RESUMO

Fire is an important ecological disturbance that can reset ecosystems and initiate changes in plant community composition, ecosystem biogeochemistry, and primary productivity. As herbivores rely on primary producers for food, changes in vegetation may alter plant-herbivore interactions with important-but often unexplored-feedbacks to ecosystems. Here we examined the impact of post-fire changes in plant community composition and structure on habitat suitability and rodent herbivore activity in response to a large, severe, and unprecedented fire in northern Alaskan tundra. In moist acidic tundra where the fire occurred, tundra voles (Microtus oeconomus) are the dominant herbivore and rely on the tussock forming sedge Eriophorum vaginatum for both food and nesting material. Tundra voles were 10 times more abundant at the burned site compared with nearby unburned tundra 7-12 years after the fire. Fire increased the habitat suitability for voles by increasing plant productivity and biomass, food quality, and cover through both taller vegetation and increased microtopography. As a result of elevated vole abundance, Eriophorum mortality caused by vole herbivory was two orders of magnitude higher than natural mortality and approached the magnitude of the mortality rate resulting directly from the fire. These findings suggest that post-fire increases in herbivore pressure on Eriophorum could, in turn, disrupt graminoid recovery and enhance shrub encroachment. Tundra state transitions from graminoid to shrub dominated are also evident following other disturbances and fertilization experiments, suggesting that as Arctic temperatures rise, greater available nutrients and increased frequencies of large-scale disturbances may also alter plant-animal interactions with cascading impacts on plant communities and ecosystem function.


Assuntos
Ecossistema , Herbivoria , Animais , Regiões Árticas , Arvicolinae , Plantas , Tundra
9.
Nat Plants ; 8(3): 209-216, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115725

RESUMO

The future of the land carbon sink depends on the availability of nitrogen (N)1,2 and, specifically, on symbiotic N fixation3-8, which can rapidly alleviate N limitation. The temperature response of symbiotic N fixation has been hypothesized to explain the global distribution of N-fixing trees9,10 and is a key part of some terrestrial biosphere models (TBMs)3,7,8, yet there are few data to constrain the temperature response of symbiotic N fixation. Here we show that optimal temperatures for N fixation in four tree symbioses are in the range 29.0-36.9 °C, well above the 25.2 °C optimum currently used by TBMs. The shape of the response to temperature is also markedly different to the function used by TBMs (asymmetric rather than symmetric). We also show that N fixation acclimates to growing temperature (hence its range of optimal temperatures), particularly in our two tropical symbioses. Surprisingly, optimal temperatures were 5.2 °C higher for N fixation than for photosynthesis, suggesting that plant carbon and N gain are decoupled with respect to temperature. These findings may help explain why N-fixing tree abundance is highest where annual maximum temperatures are >35 °C (ref. 10) and why N-fixing symbioses evolved during a warm period in the Earth's history11,12. Everything else being equal, our findings indicate that climate warming will probably increase N fixation, even in tropical ecosystems, in direct contrast to past projections8.


Assuntos
Ecossistema , Fixação de Nitrogênio , Sequestro de Carbono , Temperatura , Árvores/fisiologia
10.
Ecol Appl ; 32(1): e02478, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34657358

RESUMO

We use a simple model of coupled carbon and nitrogen cycles in terrestrial ecosystems to examine how "explicitly representing grazers" vs. "having grazer effects implicitly aggregated in with other biogeochemical processes in the model" alters predicted responses to elevated carbon dioxide and warming. The aggregated approach can affect model predictions because grazer-mediated processes can respond differently to changes in climate compared with the processes with which they are typically aggregated. We use small-mammal grazers in a tundra as an example and find that the typical three-to-four-year cycling frequency is too fast for the effects of cycle peaks and troughs to be fully manifested in the ecosystem biogeochemistry. We conclude that implicitly aggregating the effects of small-mammal grazers with other processes results in an underestimation of ecosystem response to climate change, relative to estimations in which the grazer effects are explicitly represented. The magnitude of this underestimation increases with grazer density. We therefore recommend that grazing effects be incorporated explicitly when applying models of ecosystem response to global change.


Assuntos
Dióxido de Carbono , Ecossistema , Animais , Regiões Árticas , Mudança Climática , Mamíferos , Tundra
11.
Front Plant Sci ; 12: 746464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790212

RESUMO

Arctic Treeline is the transition from the boreal forest to the treeless tundra and may be determined by growing season temperatures. The physiological mechanisms involved in determining the relationship between the physical and biological environment and the location of treeline are not fully understood. In Northern Alaska, we studied the relationship between temperature and leaf respiration in 36 white spruce (Picea glauca) trees, sampling both the upper and lower canopy, to test two research hypotheses. The first hypothesis is that upper canopy leaves, which are more directly coupled to the atmosphere, will experience more challenging environmental conditions and thus have higher respiration rates to facilitate metabolic function. The second hypothesis is that saplings [stems that are 5-10cm DBH (diameter at breast height)] will have higher respiration rates than trees (stems ≥10cm DBH) since saplings represent the transition from seedlings growing in the more favorable aerodynamic boundary layer, to trees which are fully coupled to the atmosphere but of sufficient size to persist. Respiration did not change with canopy position, however respiration at 25°C was 42% higher in saplings compared to trees (3.43±0.19 vs. 2.41±0.14µmolm-2 s-1). Furthermore, there were significant differences in the temperature response of respiration, and seedlings reached their maximum respiration rates at 59°C, more than two degrees higher than trees. Our results demonstrate that the respiratory characteristics of white spruce saplings at treeline impose a significant carbon cost that may contribute to their lack of perseverance beyond treeline. In the absence of thermal acclimation, the rate of leaf respiration could increase by 57% by the end of the century, posing further challenges to the ecology of this massive ecotone.

12.
Sci Rep ; 11(1): 22709, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811437

RESUMO

Wildfire regimes are being altered in ecosystems worldwide. The density of reptiles responds to fires and changes to habitat structure. Some of the most vulnerable ecosystems to human-increased fire frequency are old-growth Araucaria araucana forests of the southern Andes. We investigated the effects of wildfires on the density and richness of a lizard community in these ecosystems, considering fire frequency and elapsed time since last fire. During the 2018/2019 southern summer season, we conducted 71 distance sampling transects to detect lizards in Araucaria forests of Chile in four fire "treatments": (1) unburned control, (2) long-term recovery, (3) short-term recovery, and (4) burned twice. We detected 713 lizards from 7 species. We found that the density and richness of lizards are impacted by wildfire frequency and time of recovery, mediated by the modification of habitat structure. The lizard community varied from a dominant arboreal species (L. pictus) in unburned and long-recovered stands, to a combination of ground-dwelling species (L. lemniscatus and L. araucaniensis) in areas affected by two fires. Araucaria forests provided key habitat features to forest reptiles after fires, but the persistence of these old-growth forests and associated biodiversity may be threatened given the increase in fire frequency.


Assuntos
Araucaria/crescimento & desenvolvimento , Florestas , Lagartos/classificação , Incêndios Florestais , Animais , Biodiversidade , Chile , Densidade Demográfica
13.
Physiol Plant ; 172(3): 1535-1549, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33496962

RESUMO

Urban forest patches can provide critical ecosystem services and their ability to regenerate native tree species is critical to their sustainability. Little is known about native tree seedling establishment and physiological function in urban ecosystems. This growth chamber study examined the effects of urban soil and air temperatures on white oak (Quercus alba L.) germination, seedling growth, and leaf-level physiology. A split-plot design tested effects of field collected soils from urban and reference forest sites in Baltimore, Maryland, and warm (urban) versus cool (rural) growth chamber temperature regimes. Seedlings were harvested at the end of the 23-week experiment to assess foliar chemistry and biomass allocation. Seed germination was unaffected by treatments and was high in both soil types and temperature regimes. Urban soils supported significantly higher total seedling biomass and had a significant effect on leaf-level physiological parameters, with seedlings grown in urban soils having greater Anet , Vcmax , ETRmax , Jmax , PNUE, gs , Anet /Rd , and PIabs (an integrated chlorophyll fluorescence parameter). PIabs measurements taken throughout the experiment revealed a significant time × temperature interaction effect. Baltimore urban forest patch soils were higher in nutrients than reference soils, but also higher in heavy metals. Despite higher levels of heavy metals, these results demonstrate that urban forest patch soils are able to support robust white oak seedling growth and enhanced seedling physiological parameters. However, interactions with temperature suggest that warming air temperatures may cause seedling stress and reduced growth.


Assuntos
Quercus , Biomassa , Ecossistema , Fluorescência , Fotossíntese , Plântula , Solo , Temperatura , Árvores
14.
New Phytol ; 229(3): 1312-1325, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32931621

RESUMO

Short-term temperature response curves of leaf dark respiration (R-T) provide insights into a critical process that influences plant net carbon exchange. This includes how respiratory traits acclimate to sustained changes in the environment. Our study analysed 860 high-resolution R-T (10-70°C range) curves for: (a) 62 evergreen species measured in two contrasting seasons across several field sites/biomes; and (b) 21 species (subset of those sampled in the field) grown in glasshouses at 20°C : 15°C, 25°C : 20°C and 30°C : 25°C, day : night. In the field, across all sites/seasons, variations in R25 (measured at 25°C) and the leaf T where R reached its maximum (Tmax ) were explained by growth T (mean air-T of 30-d before measurement), solar irradiance and vapour pressure deficit, with growth T having the strongest influence. R25 decreased and Tmax increased with rising growth T across all sites and seasons with the single exception of winter at the cool-temperate rainforest site where irradiance was low. The glasshouse study confirmed that R25 and Tmax thermally acclimated. Collectively, the results suggest: (1) thermal acclimation of leaf R is common in most biomes; and (2) the high T threshold of respiration dynamically adjusts upward when plants are challenged with warmer and hotter climates.


Assuntos
Aclimatação , Folhas de Planta , Ecossistema , Respiração , Temperatura
15.
Tree Physiol ; 41(2): 223-239, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32975283

RESUMO

The absence of pines from tropical forests is a puzzling biogeographical oddity potentially explained by traits of shade intolerance. Pinus krempfii (Lecomte), a flat-leaved pine endemic to the Central Highlands of Vietnam, provides a notable exception as it seems to compete successfully with shade-tolerant tropical species. Here, we test the hypothesis that successful conifer performance at the juvenile stage depends on physiological traits of shade tolerance by comparing the physiological characteristics of P. krempfii to coexisting species from two taxa: the genus Pinus, and a relatively abundant and shade-tolerant conifer family found in pantropical forests, the Podocarpaceae. We examined leaf photosynthetic, respiratory and biochemical traits. Additionally, we compiled attainable maximum photosynthesis, maximum RuBP carboxylation (Vcmax) and maximum electron transport (Jmax) values for Pinus and Podocarpaceae species from the literature. In our literature compilation, P. krempfii was intermediate between Pinus and Podocarpaceae in its maximum photosynthesis and its Vcmax. Pinus exhibited a higher Vcmax than Podocarpaceae, resulting in a less steep slope in the linear relationship between Jmax and Vcmax. These results suggest that Pinus may be more shade intolerant than Podocarpaceae, with P. krempfii falling between the two taxa. However, in contrast, Vietnamese conifers' leaf mass per areas and biochemical traits did not highlight the same intermediate nature of P. krempfii. Furthermore, regardless of leaf morphology or family assignation, all species demonstrated a common and extremely high carbon gain efficiency. Overall, our findings highlight the importance of shade-tolerant photosynthetic traits for conifer survival in tropical forests. However, they also demonstrate a diversity of shade tolerance strategies, all of which lead to the persistence of Vietnamese juvenile conifers in low-light tropical understories.


Assuntos
Pinus , Povo Asiático , Florestas , Humanos , Luz , Fotossíntese , Folhas de Planta , Árvores
16.
Tree Physiol ; 41(2): 269-279, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33313756

RESUMO

The provisioning of critical ecosystem services to cities of the eastern USA depends on the health and physiological function of trees in urban areas. Although we know that the urban environment may be stressful for trees planted in highly developed areas, it is not clear that trees in urban forest patches experience the same stressful environmental impacts. In this study, we examine chlorophyll fluorescence parameters, leaf traits, foliar nutrients and stable isotope signatures of urban forest patch trees compared with trees growing at reference forest sites, in order to characterize physiological response of these native tree species to the urban environment of three major cities arranged along a latitudinal gradient (New York, NY; Philadelphia, PA; Baltimore, MD). Overall, white oaks (Quercus alba L.) show more differences in chlorophyll fluorescence parameters and leaf traits by city and site type (urban vs reference) than red maples (Acer rubrum L.). The exceptions were δ13C and δ15N, which did not vary in white oak foliage but were significantly depleted (δ13C) and enriched (δ15N) in urban red maple foliage. Across all sites, red maples had higher thermal tolerance of photosynthesis (Tcrit) than white oaks, suggesting a greater ability to withstand temperature stress from the urban heat island effect and climate change. However, the highest average values of Tcrit were found in the Baltimore urban white oaks, suggesting that species suitability and response to the urban environment varies across a latitudinal gradient. Stomatal pore index (SPI) showed inter-specific differences, with red maple SPI being higher in urban trees, whereas white oak SPI was lower in urban trees. These results demonstrate that differences in native tree physiology occur between urban and reference forest patches, but they are site- and species-specific. Data on local site characteristics and tree species performance over time remain necessary to gain insight about urban woodland ecosystem function.


Assuntos
Acer , Quercus , Clorofila , Cidades , Ecossistema , Fluorescência , Florestas , Temperatura Alta , New York , Folhas de Planta , Árvores
17.
New Phytol ; 228(4): 1243-1255, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32564374

RESUMO

The Kok effect is a well-known phenomenon in which the quantum yield of photosynthesis changes abruptly at low light. This effect has often been interpreted as a shift in leaf respiratory metabolism and thus used widely to measure day respiration. However, there is still no formal evidence that the Kok effect has a respiratory origin. Here, both gas exchange and isotopic labeling were carried out on sunflower leaves, using glucose that was 13 C-enriched at specific C-atom positions. Position-specific decarboxylation measurements and NMR analysis of metabolites were used to trace the fate of C-atoms in metabolism. Decarboxylation rates were significant at low light (including above the Kok break point) and increased with decreasing irradiance below 100 µmol photons m-2  s-1 . The variation in several metabolite pools such as malate, fumarate or citrate, and flux calculations suggest the involvement of several decarboxylating pathways in the Kok effect, including the malic enzyme. Our results show that day respiratory CO2 evolution plays an important role in the Kok effect. However, the increase in the apparent quantum yield of photosynthesis below the Kok break point is also probably related to malate metabolism, which participates in maintaining photosynthetic linear electron flow.


Assuntos
Helianthus , Dióxido de Carbono , Luz , Fotossíntese , Folhas de Planta
18.
Glob Chang Biol ; 26(7): 4068-4078, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32279395

RESUMO

Relationships between gross primary productivity (GPP) and the remotely sensed photochemical reflectance index (PRI) suggest that time series of foliar PRI may provide insight into climate change effects on carbon cycling. However, because a large fraction of carbon assimilated via GPP is quickly returned to the atmosphere via respiration, we ask a critical question-can PRI time series provide information about longer term gains in aboveground carbon stocks? Here we study the suitability of PRI time series to understand intra-annual stem-growth dynamics at one of the world's largest terrestrial carbon pools-the boreal forest. We hypothesized that PRI time series can be used to determine the onset (hypothesis 1) and cessation (hypothesis 2) of radial growth and enable tracking of intra-annual tree growth dynamics (hypothesis 3). Tree-level measurements were collected in 2018 and 2019 to link highly temporally resolved PRI observations unambiguously with information on daily radial tree growth collected via point dendrometers. We show that the seasonal onset of photosynthetic activity as determined by PRI time series was significantly earlier (p < .05) than the onset of radial tree growth determined from the point dendrometer time series which does not support our first hypothesis. In contrast, seasonal decline of photosynthetic activity and cessation of radial tree growth was not significantly different (p > .05) when derived from PRI and dendrometer time series, respectively, supporting our second hypothesis. Mixed-effects modeling results supported our third hypothesis by showing that the PRI was a statistically significant (p < .0001) predictor of intra-annual radial tree growth dynamics, and tracked these daily radial tree-growth dynamics in remarkable detail with conditional and marginal coefficients of determination of 0.48 and 0.96 (for 2018) and 0.43 and 0.98 (for 2019), respectively. Our findings suggest that PRI could provide novel insights into nuances of carbon cycling dynamics by alleviating important uncertainties associated with intra-annual vegetation response to climate change.


Assuntos
Tecnologia de Sensoriamento Remoto , Madeira , Fotossíntese , Estações do Ano , Taiga
19.
Oecologia ; 192(3): 671-685, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32052180

RESUMO

Warming-induced nutrient enrichment in the Arctic may lead to shifts in leaf-level physiological properties and processes with potential consequences for plant community dynamics and ecosystem function. To explore the physiological responses of Arctic tundra vegetation to increasing nutrient availability, we examined how a set of leaf nutrient and physiological characteristics of eight plant species (representing four plant functional groups) respond to a gradient of experimental nitrogen (N) and phosphorus (P) enrichment. Specifically, we examined a set of chlorophyll fluorescence measures related to photosynthetic efficiency, performance and stress, and two leaf nutrient traits (leaf %C and %N), across an experimental nutrient gradient at the Arctic Long Term Ecological Research site, located in the northern foothills of the Brooks Range, Alaska. In addition, we explicitly assessed the direct relationships between chlorophyll fluorescence and leaf %N. We found significant differences in physiological and nutrient traits between species and plant functional groups, and we found that species within one functional group (deciduous shrubs) have significantly greater leaf %N at high levels of nutrient addition. In addition, we found positive, saturating relationships between leaf %N and chlorophyll fluorescence measures across all species. Our results highlight species-specific differences in leaf nutrient traits and physiology in this ecosystem. In particular, the effects of a gradient of nutrient enrichment were most prominent in deciduous plant species, the plant functional group known to be increasing in relative abundance with warming in this ecosystem.


Assuntos
Ecossistema , Tundra , Alaska , Regiões Árticas , Nutrientes
20.
Tree Physiol ; 40(5): 605-620, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-31976523

RESUMO

Increasing dryness challenges trees' ability to maintain water transport to the leaves. Most plant hydraulics models use a static xylem response to water stress. Yet, in reality, lower soil moisture and warmer temperatures during growing seasons feed back onto xylem development. In turn, adjustments to water stress in the newly built xylem influence future physiological responses to droughts. In this study, we investigate the annual variation of anatomical traits in branch xylem in response to different soil and atmospheric moisture conditions and tree stress levels, as indicated by seasonal predawn leaf water potential (ΨL,pd). We used a 6-year field experiment in southwestern USA with three soil water treatments applied to Pinus edulis Engelm trees-ambient, drought (45% rain reduction) and irrigation (15-35% annual water addition). All trees were also subject to a natural 1-year acute drought (soil and atmospheric) that occurred during the experiment. The irrigated trees showed only moderate changes in anatomy-derived hydraulic traits compared with the ambient trees, suggesting a generally stable, well-balanced xylem structure under unstressed conditions. The artificial prolonged soil drought increased hydraulic efficiency but lowered xylem construction costs and decreased tracheid implosion safety ((t/b)2), suggesting that annual adjustments of xylem structure follow a safety-efficiency trade-off. The acute drought plunged hydraulic efficiency across all treatments. The combination of acute and prolonged drought resulted in vulnerable and inefficient new xylem, disrupting the stability of the anatomical trade-off observed in the rest of the years. The xylem hydraulic traits showed no consistent direct link to ΨL,pd. In the future, changes in seasonality of soil and atmospheric moisture are likely to have a critical impact on the ability of P. edulis to acclimate its xylem to warmer climate. Furthermore, the increasing frequency of acute droughts might reduce hydraulic resilience of P. edulis by repeatedly creating vulnerable and less efficient anatomical structure.


Assuntos
Secas , Pinus , Chuva , Árvores , Água , Xilema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...